
ER DIAGRAM
ER) diagram, a graphical representation of entities
and their relationships to each other, typically used
in computing in regard to the organization of data
within databases or information systems.
An Entity Relationship Diagram (ERD) is a visual
representation of different data using conventions
that describe how these data are related to each other

ER Diagram

An entity is a piece of data-an object or concept about which

data is stored.
A relationship is how the data is shared between entities

1976 proposed by Peter Chen

ER diagram is widely used in database design
Represent conceptual level of a database system

Describe things and their relationships in high level

ER diagram Symbols

What is An Entity(e.g. car, student)

• An entity can be a person, place, event, or
object that is relevant to a given system. For
example, a school system may include
students, teachers, major courses, subjects,
fees, and other items. Entities are
represented in ER diagrams by a rectangle and
named using singular nouns.

Types of Entity

• Strong entities exist independently from other
entity types. They always possess one or more
attributes that uniquely distinguish each
occurrence of the entity.

• Weak entities depend on some other entity
type. They don't possess unique attributes
(also known as a primary key) and have no
meaning in the diagram without depending on
another entity.

Weak Entity

• The entity set which does not have sufficient
attributes to form a primary key is called as
Weak entity set.. Consider an entity set
Payment which has three attributes:
payment_number, payment_date and
payment_amount. Although each payment
entity is distinct but payment for different
loans may share the same payment number.
Thus, this entity set does not have a primary
key.

Weak Entity

• A weak entity is an entity that depends on
the existence of another entity. In more
technical terms it can defined as an entity that
cannot be identified by its own attributes. It
uses a foreign key combined with its
attributed to form the primary key. An entity
like order item is a good example for this. The
order item will be meaningless without an
order so it depends on the existence of order.

Strong Entity

• An entity set that has a primary key is called
as Strong entity set.

Difference between strong and weak
entity

Attribute (Properties of entity)

• An attribute is a property, trait, or
characteristic of an entity, relationship, or
another attribute. For example, the attribute
Inventory Item Name is an attribute of the
entity Inventory Item.

Types of Attributes

• Multivalued attributes are those that are
capable of taking on more than one value.

• Derived attributes are attributes whose value
can be calculated from related attribute
values.

Multivalued Attributes

• If an attribute can have more than one value it
is called an multivalued attribute. It is
important to note that this is different to an
attribute having its own attributes. For
example a teacher entity can have multiple
subject values.

•

Derived Attribute

• An attribute based on another attribute. This
is found rarely in ER diagrams. For example for
a circle the area can be derived from the
radius.

Derived attribute

Relationship

• A relationship describes how entities interact.
For example, the entity “carpenter” may be
related to the entity “table” by the
relationship “builds” or “makes”.
Relationships are represented by diamond
shapes and are labeled using verbs.

5/12/2016 22 Yan Huang - ER

Relationship

• The degree of a relationship = the number of
entity sets that participate in the relationship
– Mostly binary relationships

– Sometimes more

• Mapping cardinality of a relationship
– 1 –1

– 1 – many

– many – 1

– Many-many

5/12/2016 23 Yan Huang - ER

One-One and One-Many

5/12/2016 24 Yan Huang - ER

Many-one and many-many

Cardinality

• In the relational model, tables can be related as any of "one-to-many" or
"many-to-many." This is said to be the cardinality of a given table in
relation to another.

• For example, consider a database designed to keep track of hospital
records. Such a database could have many tables like:

• a doctor table with information about physicians;
• a patient table for medical subjects undergoing treatment;
• and a department table with an entry for each division of a hospital.
• In that model:
• There is a many-to-many relationship between the records in the doctor

table and records in the patient table because doctors have many
patients, and a patient could have several doctors;

• A one-to-many relation between the department table and the doctor
table because each doctor may work for only one department, but one
department could have many doctors.

Cardinality

• These two further defines relationships
between entities by placing the relationship in
the context of numbers. In an email system,
for example, one account can have multiple
contacts. Cardinalities are used when you are
creating an E/R diagram, and show the
relationships between entities/ tables.

What is the use of ER Diagram

• ER diagrams are most often associated with
complex databases that are used in software
engineering and IT networks. In particular, ER
diagrams are frequently used during the design
stage of a development process in order to
identify different system elements and their
relationships with each other. For example, an
inventory software used in a retail shop will have
a database that monitors elements such as
purchases, item, item type, item source and item
price. Rendering this information through an ER
diagram would be something like this:

Why ER diagram

• ER diagrams constitute a very useful framework for creating
and manipulating databases. First, ER diagrams are easy to
understand and do not require a person to undergo
extensive training to be able to work with it efficiently and
accurately. This means that designers can use ER diagrams
to easily communicate with developers, customers, and
end users, regardless of their IT proficiency. Second, ER
diagrams are readily translatable into relational tables
which can be used to quickly build databases. In addition,
ER diagrams can directly be used by database developers as
the blueprint for implementing data in specific software
applications. Lastly, ER diagrams may be applied in other
contexts such as describing the different relationships and
operations within an organization.

Tips on How to Draw ER Diagrams

• Identify all the relevant entities in a given system and determine the
relationships among these entities.

• An entity should appear only once in a particular diagram.
• Provide a precise and appropriate name for each entity, attribute, and

relationship in the diagram. Terms that are simple and familiar always
beats vague, technical-sounding words. In naming entities, remember to
use singular nouns. However, adjectives may be used to distinguish
entities belonging to the same class (part-time employee and full time
employee, for example). Meanwhile attribute names must be meaningful,
unique, system-independent, and easily understandable.

• Remove vague, redundant or unnecessary relationships between
entities.

• Never connect a relationship to another relationship.
• Make effective use of colors. You can use colors to classify similar entities

or to highlight key areas in your diagrams.

Example of Customer ER diagram with
primary key

• ER

5/12/2016 35 Yan Huang - ER

Another Example with multivalued and
Derived Attribute

Simple ER diagram for student

Library Management System

Library management system

Railway reservation system

College Management System

Generalization

Bottom up approach in which two
low level entities are combined

together to form high level entities

Specialization

• Opposite to specialization. It is a top down
approach in which high level entities can
be broken down into lower level entities.

